Skip to content

Computational infrastructure for cosmogenic-nuclide geochemistry

February 25, 2020

The point of this post is just to provide a link to an otherwise obscure document that is, nevertheless, interesting if you are (i) a cosmogenic-nuclide geochronologist, which is unusual already, and also (ii) a cosmogenic-nuclide geochronologist interested in data management and computational infrastructure, which is, to say the least, far beyond unusual. However, I am sure that if any such people do exist, they are probably readers of this blog, so this seemed like a good place to put it.

The document is here.

What it is is the project description section of a proposal submitted by myself and Ben Laabs (NDSU) to the NSF ‘Geoinformatics’ program in August, 2019.

Basically, the main idea of the proposal is to provide some support for the ICE-D database projects previously featured in this blog. Although presumably this proposal has now been reviewed, its funding status is unknown at the moment.

In any case, I think this document is interesting for several reasons, as follows:

  1. It contains the best and probably only intelligible description of what the ICE-D database project is supposed to be doing, and why it is set up the way it is. The ICE-D websites are otherwise nearly entirely without documentation. It’s not going to give you the details about exactly what is happening in the back end (and I apologize in advance for Figure 2), but it is a good overview of the purpose and context of the project that is not otherwise written down anywhere else.
  2. It contains some ideas on why the ICE-D project infrastructure is, potentially, a pretty good way to think about computational and data management infrastructure for geochemistry and geochronology.
  3. It contains some decent ideas on what science applications we could use it for in the future.
  4. It introduces the phrase “transparent middle layer” to geochronology. Although this makes the whole thing sound like a terrible Silicon Valley venture-capital pitch — synergizing the enterprise cloud data ecosystem with a transparent middle layer — and I may regret it later, I think it is a good way to think about how geochronology data management should work if it is going to be useful for anything.
  5. It also contains a compact account of the historical development of the bits of computational infrastructure used for cosmogenic-nuclide geochemistry, in particular the various online exposure age calculators. Mainly because the production rate calculations needed to get from a nuclide concentration to an exposure age are such a mess, cosmogenic-nuclide geochemists were quite early adopters of cloud computing in the form of the online exposure age calculators. I think this is interesting.

On the other hand, it is a proposal, so there are also a lot of things in there that are just proposed and may never happen, and in addition it wildly overuses the word “synoptic.” But that part is really not too bad. In any case, if you plan to be involved in Earth science applications of cosmogenic-nuclide geochemistry in future, it is a potentially useful read.

No comments yet

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.

%d bloggers like this: